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Universality class for extinction-survival phase transition in one dimension
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In one-dimension irreversibly interacting-particle systems exhibiting extinction-survival phase transi-
tions, such as the contact process and branching annihilation random walk, are analyzed using a space-
time renormalization-group method. Strong positive evidence is shown for the conjecture that all
“reasonably” defined interacting-particle systems with nearest-neighbor interactions belong to the same

universality class of directed percolation.

PACS number(s): 64.60.Ak, 05.40.+]

Topics from diverse fields of sciences, such as catalytic
reactions [1], earthquakes [2], granular dynamics [3], and
traffic jams [4], are attracting the interest of many statist-
ical physicists recently as examples of irreversible dynam-
ic systems showing phase transitions. The most interest-
ing point is that their critical behavior is often very simi-
lar to that of thermal equilibrium systems although they
are far from equilibrium. In order to elucidate the essen-
tial mechanism of dynamic phase transitions, it is
worthwhile to investigate minimal mathematical models.

Among many models showing dynamic phase transi-
tions, the contact process (CP) [5] and the branching an-
nihilation random walk (BARW) [6,7] are considered to
be typical minimal models. Both models are defined on a
lattice where particles are created or annihilated random-
ly.

In the case of CP, a randomly chosen particle either
creates a particle on an empty neighbor site or it is an-
nihilated randomly. If the rate of annihilation dominates
the creation rate, all particles die out. On the other hand,
at large creation rates particles can survive forever. This
is a typical dynamic phase transition between an extinc-
tion phase and a survival phase. It is known that CP in d
dimensions belongs to the same universality as directed
percolation (DP) in d + 1 dimensions [8].

BARW is defined in a similar way. A randomly chosen
particle creates a particle on a neighbor site or walks ran-
domly to a neighbor site. When two particles try to share
a site they both annihilate simultaneously (pair annihila-
tion). The extinction-survival transition can also occur in
the case of BARW. For a large creation rate we have a
survival state as in the case of CP. However, the ex-
istence of the extinction state is rather delicate for
BARW. Since annihilation takes place only at collisions,
the occurrence frequency is proportional to the square of
the particle density in a mean-field sense while the birth
frequency is a linear function of the density. This implies
that the annihilation process is negligible for a low-
density state meaning that we always have a survival
phase. This mean-field picture is valid only for space di-
mensions higher than 2. Numerical evidence [7] and a
rigorous proof for one-dimension shows [6] that there ex-
ists a nontrivial extinction state in one-dimension. The
particle density p is known to follow the familiar critical
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behavior.
p<lp—p.l?, (1)

where p is the rate of choosing a random walk and S and
p. denote the critical exponent and critical point, respec-
tively.

While first estimations of 8 [7] produced a value a little
larger than the one for CP, b =0.2769(2) [9], Jensen [10]
shows that the values of dynamical exponents, related to
time behavior at the critical point, are very close to DP
values, strongly indicating that BARW and CP are in the
same universality class, in spite of very different dynamic
rules.

In this paper, using space-time renormalization, we
show strong theoretical evidence for this conjecture in a
much more general sense. All “reasonably”’ defined in-
teracting particle systems with nearest-neighbor interac-
tions in one-dimension converge to CP, i.e., they all be-
long to the DP universality class in a macroscopic scale.

A general case of an interacting-particle system with
nearest-neighbor interactions is defined by repeating the
following dynamics: Choose a nearest-neighbor pair of
sites at random and change the pair randomly with a
specified rate. There are four possible configurations for
a pair, 00, 01, 10, and 11, where O stands for an empty
site and 1 for an occupied one, so that the full informa-
tion on the transition rates is given by a transition ma-
trix. Assuming the right-left symmetry and limiting our
consideration to the models with the extinction state as
an adsorption point, the transition matrix M for the four
configurations is given as

1 0 0 0
a l—a—b—c b c

M= a b l1—a—b—c c 2
d e e 1—d —2e

Here, we introduce five parameters which denote the oc-
currence probabilities of the following transitions: a —
spontaneous annihilation, 01—00, or 10—00; b—
random walk, 01—10, or 10—01; c¢—branching,
01—11, or 10— 11; d —pair annihilation, 11 —00; e —
single annihilation, 11— 10, or 11—-01. As special cases
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CP and BARW are characterized by a one parameter as
(CP) b=0, d=0,
(BARW) a=0, d=b , and e=(1—0b)/2 .

c=1—a, and e=a /2,

c=1—b,

Now we introduce the idea of renormalization-group
method for this general transition matrix. Let us replace
every two sites of the original lattice by one supersite of a
coarse-grained lattice. A supersite is considered to be oc-
cupied if at least one of the two corresponding sites of the
original lattice are occupied; it is empty if (and only if)
both of the corresponding original sites are empty. As
for the time steps, we consider four steps in the original
system as 1 step in the coarse-grained dynamics (see Fig.
1). Attempts to vary the number of steps corresponding
to one coarse-grained step showed that in the case of five
steps the results are almost the same, while for three steps
the convergence is much slower, though qualitatively the
behavior is very similar.

Every event in the original space has a corresponding
event on the superlattice, which defines an interacting-
particle problem in the coarse-grained space. Although
the original process can be a “pure” CP or BARW, the
corresponding process in the coarse-grained space will
generally be a “mixed” process.

In order to determine the coarse-grained transition ma-
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FIG. 1. Coarse graining of the dynamics in the space time.

trix we count up all possible events in an original lattice
of four sites and four time steps. To estimate the weights
of different initial configurations giving the same state on
the superlattice (for example, for the coarse-grained pair,
10, we have three configurations, 1100, 1000, and 0100).
We assume a kind of stationary condition for the
configuration probability p(-) with the following bound-
ary conditions (mean-field method);

p(n(0),m(1),1(2),m(3),m(4),t)=

where 77(x) takes the value O or 1, representing a vacant
site and a particle on a site. These straightforward but
troublesome computations are done by using algebraic
calculations on a workstation-type computer.

Figure 2(a) shows the values of the renormalization pa-
rameters starting from BARW parameter values with
b=0.103 as functions of the number of renormalizations,
n. In this case the branching probability ¢ grows with n
and converges to 1, while the rest of the parameters con-
verge to zero. Figure 2(b) shows the same plot starting
with a slightly larger value b =0.105. Here, parameters
b, ¢, and d decrease with s, while @ and e, corresponding
to annihilation processes, increase in value. The change
of the stationary particle density in the renormalized sys-
tem is plotted as a function of b in Fig. 3, which clearly
shows the existence of a phase transition at b =0.1048.

In the general case [Eq. (2)] we find that in the macro-
scopic limit the values of b and d always become much
smaller than other parameters a, ¢, and e. This result is
intuitively recognized as follows. Assume that we renor-
malize L sites as a supersite and L time steps into one su-
perstep. A random walker needs about L? time steps to
move across L sites, so for larger L the contribution of
random walk is less effective. A pair annihilation of
coarse-grained particles means that all particles in the
original 2L sites vanish in finite time steps. This oc-
currence is obviously less likely for larger L.

Since b and d vanish in the macroscopic limit, the mac-
roscopic dynamics can be regarded as CP if the ratio e /a

1

converges to 5 as we repeat the renormalization. As is
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FIG. 2. (a) Change of transition-probability matrix elements
in a survival state, where n denotes the number of renormaliza-
tion. a: solid circles; b: open circles; c: solid squares; d: solid
triangles; and e: open triangles. (b) Change of transition proba-
bility matrix elements in an extinction state. The notations are
the same as in (a).
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FIG. 3. Stationary particle density as a function of b. The
phase transition becomes evident as the number of renormaliza-
tions increases. Open triangles (n =3), open circles (n =4),
solid triangles (n =5), open squares (n =6), and solid circles
(n="7).

shown in Fig. 4, the ratios e/a starting from several
different combinations of a, ¢, and e actually gather
around { as we repeat the renormalization procedure.
This result shows that all systems covered by Eq. (2) can
be regarded as CP in the macroscopic limit, and thus be-
long to the same universality class as DP [8].
Summarizing the results, we have introduced a general
representation of interacting-particle systems in one di-
mension, including CP and BARW. By directly coarse
graining the space time we obtained the renormalized
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FIG. 4. Change of the ratio e /a by renormalization for vari-
ous combinations of a4, ¢, and e with b =d =0. For different
curves a is in the interval from 0.1 to 0.2, while e takes values
between 0.02 and 0.3.

transition rates and found that any transition matrix con-
verges to that of CP in the macroscopic limit. The ex-
istence of such a huge universality class in the irreversible
dynamic critical phenomena may encourage the study of
universality in other dynamic systems.
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FIG. 1. Coarse graining of the dynamics in the space time.



